2nd edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Turin, September 13-14, 2021 Starhotels Majestic *Scientific board:* **Marco Ladetto** (Alessandria) **Umberto Vitolo** (Candiolo-TO)

How I treat young high-risk multiple myeloma

Elena Zamagni

"Seràgnoli" Institute of Hematology Bologna University School of Medicine ^{2nd edition} Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Prognostic factors in Multiple Myeloma

Patient-related	Disease burden-related	Disease biology- related	Therapy-related
Age	High B ₂ microglobulin*	Cytogenetic abnormalities	Quality of response
Performance status	Low albumin*	GEP	Early relapse
Comorbidities	Renal impairment	Circulating PC	
	LDH above ULN	EMD	
		High proliferation rate	

Turin, September 13-14, 2021 Starhotels Majestic

^{2nd} edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Cytogenetic abnormalities and relationship with outcomes

Chromosome/region (frequency)	Gene involved/effect	Prognostic implication
14q32 (locus IGH) (45-50%)		
t(11;14) (20%)	Cycline D1 hyperexpression	Neutral
t(4;14) (10-15%)	FGFR3 and MMSET deregulated	Unfavorable (worsened by chromosome 1 alterations, improved by trisomy 5)
t(14; 16) (< 5%)	cMAF	Doubt, mainly unfavorable
t(14; 20) (< 5%)	UK	Doubt, mainly unfavorable
1q21 acquisition (30%)	CKS1B, MCL1	
Gain (3-4 copies)		Partially unfavorable
Amplification (≥ 4)		Unfavorable
1p32 deletion (10%)	FAF1/ CDKN2C	Unfavorable
17p deletion (8-15% according to PCs cutoff)	TP53 and UK	
Single-hit	deletion	Unfavorable
Double-hit	Bi-allelic inactivation (deletion + mutation)	Very unfavorable
n, September 13-14, 2021 els Majestic	Zama	agni E et al, «How I treat HR MM», Blood 2021, un

^{2nd edition} Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Personal recommendations on definition and treatment of HR-NDMM

Newly diagnosed transplant-eligible (NDTE) MM patients

Risk/estimated frequency	Definition	Suggested treatment
HR (25-30%)	ISS 3, 1 cytogenetic-molecular aberration*, R-ISS 3, R2-ISS 3 and 2 intermediate-high, > 0.07% circulating PCs, persistent MRD positivity after optimal treatment, renal failure	Quadruplet induction (MoAb + PI + IMiD + dex) Double ASCT Quadruplet consolidation Single/two drugs maintenance (PI + IMiD) for at least 2 years if MRD- Prompt change of therapy if/when MRD+
Ultra-HR (6-10%)	EMD, PCL (PCs > 20% or 2x 10^{9} , ≥ 2 genetic abnormalities, co-existence of genetic and at least another HR feature (see table 1), primary refractory disease	Innovative strategies, including quadruplet induction (MoAb + PI + IMiD + dex) CAR-T therapy (± ASCT) Innovative maintenance with T-cell engagers. Close MRD follow-up and change of therapy at conversion from – to +

Turin, September 13-14, 2021 Starhotels Majestic

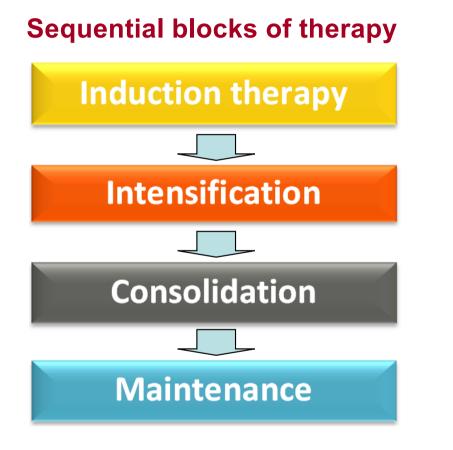
Zamagni E et al, «How I treat HR MM», Blood 2021, under revision

Why Risk Stratify?

- Two important goals
 - *Counsel:* Need to provide patients with realistic expectations based on the currently available treatments
 - Therapy: Decide if particular therapies can be chosen based on their differential effects on the high-risk and standard-risk disease

Perspectives

Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group


- High-risk can refer to many different characteristics and the magnitude of risk can be influenced by different treatmens
- <u>There is a lack of prospective randomized trials which might strongly support</u> <u>choices of therapy in this setting</u>
- Management of high-risk MM includes a complicated set of steps requiring an aggressive treatment approach
- The short-term goal of therapy is to achieve a rapid and complete response and then to use different treatment strategies to further deepen the level of response and maintain it below the detection level

^{2nd} edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

5 years later..... Pitfalls of treatment of HR patients: the black beast of MM

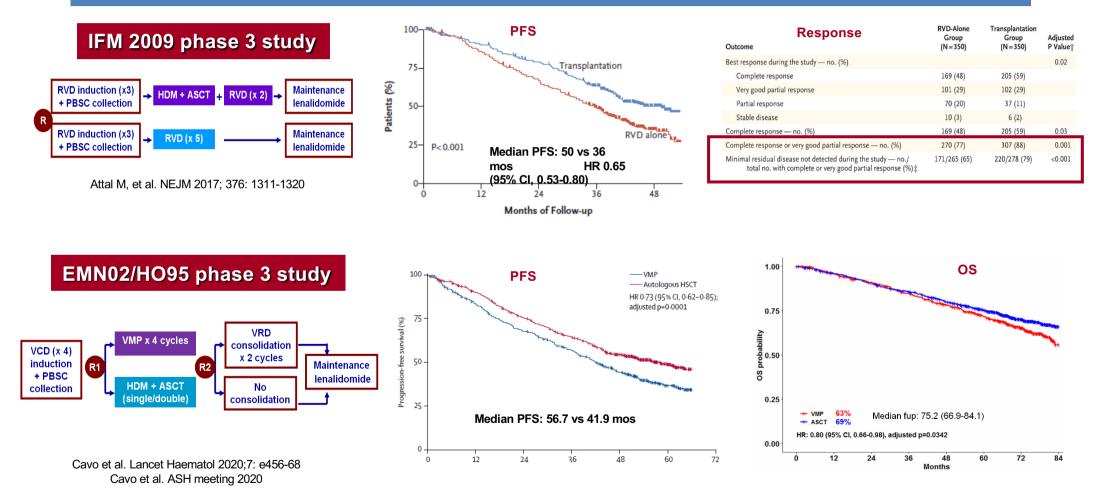
- Different definitions of HR in different trials
- Most data coming from retrospective analyses
- Guidelines and recommendations (still) poor on HR
- Lack of specific trials dedicated to HR population

Treatment paradigm for transplant-eligible patients

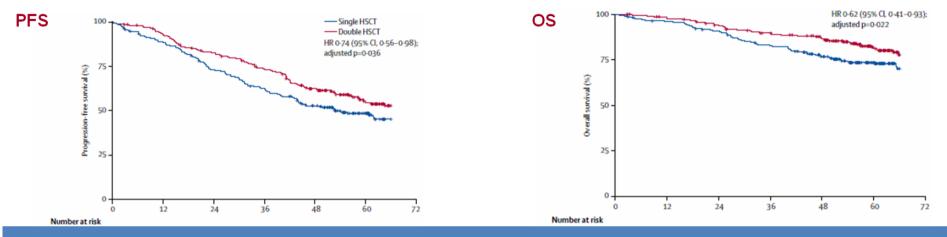
Continued cytoreduction Sustained suppression of disease burden

Key endpoints

Maximize the rate and depth of response, beyond the level of detectable MRD

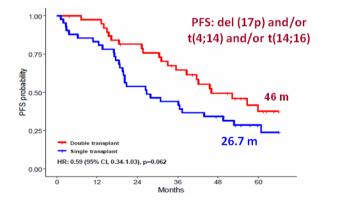

Sustain MRD negativity and prevent or delay clinical relapse

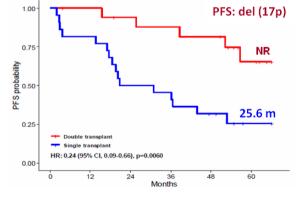
Increase PFS and OS, possibly offering a chance of cure to a fraction of patients

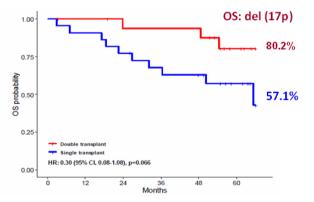

> Cavo M et al. Blood 2011;117(23):6063-73 Kumar S, et al. Lancet Oncology 2016;17:e328-46 Gay F et al. Haematologica 2018;103(2): 197-211

INTENSIFICATION phase: **ASCT**

Upfront high-dose melphalan with ASCT is still the standard of care for fit patients with NDMM, even in the novel agent era

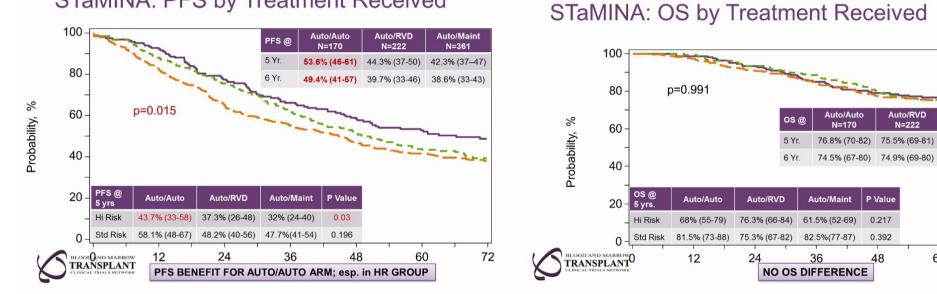



Tandem ASCT: role in HR disease (EMN02/HO95 trial)



EMN02/HO95 phase 3 study (median f up: 75 mos)

A tandem ASCT is recommended for patients with genetically defined high-risk disease



Cavo et al. Lancet Haematol 2020;7:e456-68

2nd edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Long-term follow-up (median: 6 years) of the STAMINA trial

STaMINA: PFS by Treatment Received

Turin, September 13-14, 2021 Starhotels Majestic

Parameswaran H et al, ASH 2020

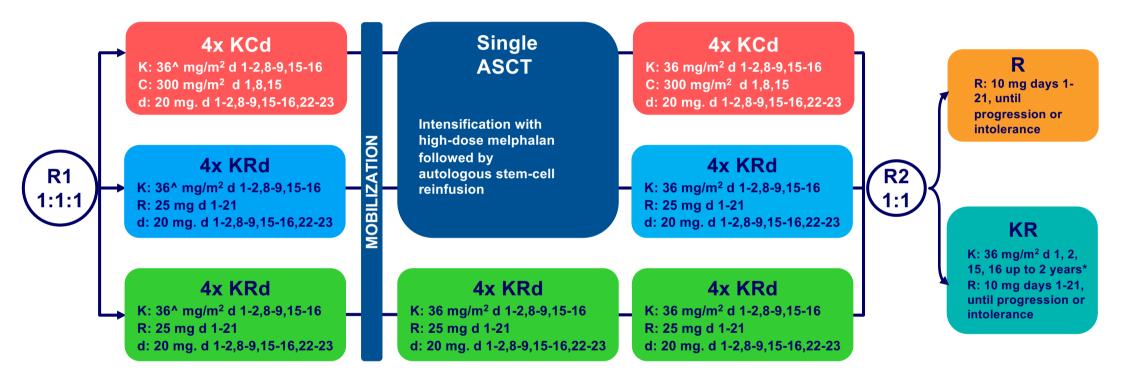
60

Auto/Main

N=361

75.3% (70-79)

75.3% (70-79)


72

16

N=222

FORTE trial: analysis in HR patients

474 NDMM patients, transplant-eligible and younger than 65 years

^20 mg/m² on days 1-2, cycle 1 only. *Carfilzomib 70 mg/m² days 1, 15 every 28 days up to 2 years for patients that have started the maintenance treatment from 6 months before the approval of Amendment 5.0 onwards.

Mina R et al, EHA 2021

NDMM, newly diagnosed multiple myeloma, R1, first randomization (induction/consolidation treatment); R2, second randomization (maintenance treatment); IQR, interquartile range K, carfilzomib; C, cyclophosphamide; R, lenalidomide; d, dexamethasone; d, days; ASCT, autologous stem-cell transplantation.

Summary of results

- Patients split in : Standard Risk (no lesion), High Risk (at least 1 chromosomal abnormalities), Double Hit (2 or more chromosomal abnormalities)
- KRd+ASCT significantly prolonged PFS vs. KRd12 in:
 - > SR patients: 4-year PFS \rightarrow 82% vs. 67%
 - → HiR patients: 4-year PFS \rightarrow 62% vs. 45%
 - > DH patients: 4-year PFS \rightarrow 55% vs. 33%
- KRd+ASCT increased the rate of 1-year sustained MRD negativity vs. Krd12 in patients with both HiR (50% vs 39%) and DH (47% vs 25%) MM.
- **KR** significantly prolonged PFS from the start of maintenance vs. R alone
 - > SR patients: 3-year PFS \rightarrow 90% vs. 73%
 - → HiR patients: 3-year PFS \rightarrow 69% vs. 59%
 - > DH patients: 3-year PFS \rightarrow 67% vs. 42%
- The benefit of KRd+ASCT vs. KRd12 and KR vs. R was observed in all subgroups: del(17p), gain(1q), del(1p), and t(4;14), except amp(1q).
 Mina R et al, EHA 2021

EHA

PFS, progression-free survival; ASCT, autologous stem-cell trasplantation; K, carfilzomib; R, lenalidomide; C, cyclophosphamide; d, dexamethasone; KCd_ASCT, KCd induction-ASCT-KCd consolidation; KRd_ASCT, KRd induction-ASCT-KRd consolidation; KRd12, 12 cycles of KRd; SR, standard risk; HiR, high risk; DH, double hit; MRD, minimal residual disease; MM, multiple myeloma..

#8540

Efficacy of Daratumumab in the treatment of Multiple Myeloma with high-risk cytogenetics: Meta-Analysis of randomized phase 3 trials.

Smith Giri MD MHS^{1,2}, Alyssa Grimshaw MSLIS³, Susan Bal MD², Kelly Godby MD², Benjamin Djulbegovic MD PhD⁴, Saad Z Usmani MD⁵, Thierry Facon⁶, Philippe Moreau⁷, Meletios A Dimopoulos MD⁸, María-Victoria Mateos MD PhD⁹, Luciano J Costa MD PhD² ⁴Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL²Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, AL²Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Birmingham, AL²Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, AL²Diversity Hospital Hotel ⁴Department of Supportive Care, City of Hope Comprehensive Cancer Center, Duret, CA², ²Plosma Cell Disorders Program, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA¹, ⁴Department of Hematology, Wile University Hospital Hotel Dieu, Nantes, France; ⁴Section of Hematology & Medician Oncology, National and Kapadistina University of Medicine, Athens, Greece; ²Department of Hematology, University Hospital SAL, Cancer Research Center, Salamanco, Spain

hematological malignancies: from benchside to clinical practice

Of 5,194 studies screened, six phase III trials were eligible. Three trials for newly diagnosed MM (ALCYONE, MAIA and CASSIOPEIA, 2,528 patients, 358 HRMM) and 3 trials for relapsed/refractory MM (CASTOR, POLLUX and CANDOR, 1,533 patients, 222 HRMM).

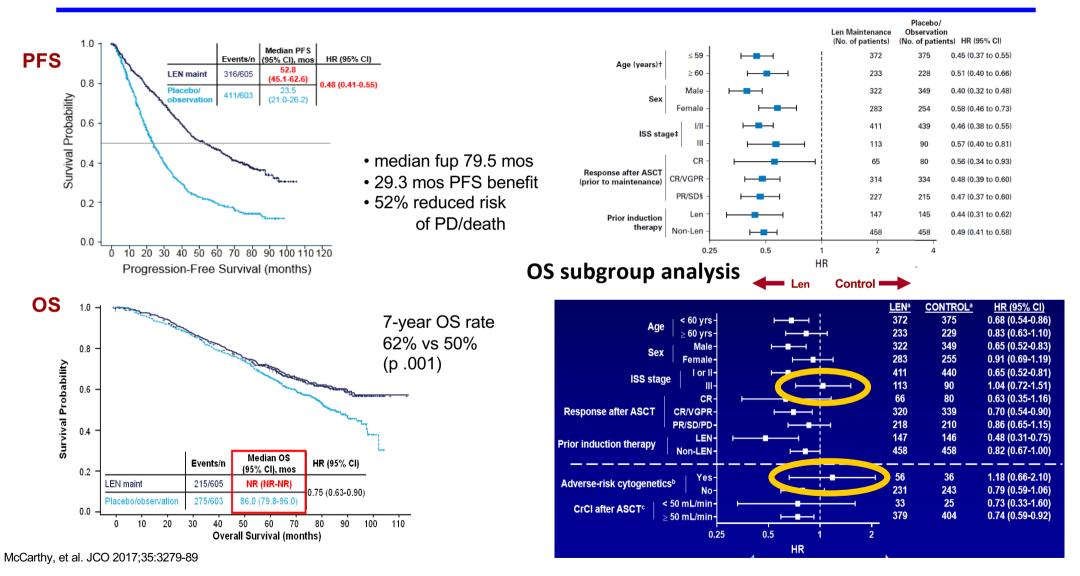
Umberto Vitolo (Candiolo-TO)

Background

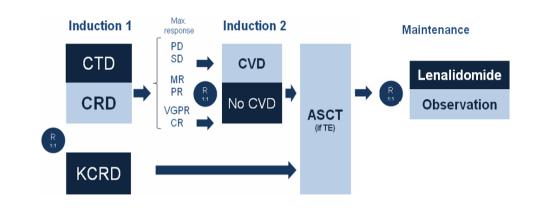
- The addition of Daratumumab (D) to backbone multiple myeloma (MM) regimens leads to improved response rates and progression free survival (PFS).
- Whether improved outcomes are also seen among patients with high-risk cytogenetics (HRC) remains unclear, particularly in first line setting

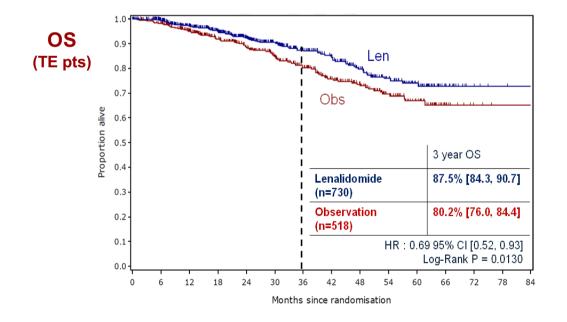
Methods

- We conducted a systematic search of bibliographic databases (Ovid EMBASE, Medline, Pubmed, Scopus, Web of Science Core Collection and Cochrane Library) clinical trials registries and meeting libraries from inception to Jan 2, 2020
- Eligibility: phase III randomized trials that compared backbone MM regimens vs. same regimen plus D either in FL or relapsed/refractory (R/R) setting and reported outcomes by cytogenetic risk (HRC vs standard risk cytogenetics, SRC).
- We defined HRC as presence of t(4;14), t(14;16) or del(17p). The primary endpoint was progression free survival. Secondary Endpoint overall survival (OS)


	Impact of Daratumumab	on PFS among MN	/I patients with high-ri	sk cytogenetics	
Study Name	Intervention	Control	Hazard Ratio	95% CI	p-Value
Alcyone	DaraVMP	VMP	0.78	0.43-1.42	0.42
Maia	DaraRD	RD	0.57	0.32-1.03	0.06
Cassiopeia	DaraVTD	VTD	0.67	0.35-1.29	0.23
Pooled Effect Siz	ze (I²0%, Cochran's Q µ	o = 0.77)	0.67	0.47-0.95	0.025
Castor	DaraVD	VD	0.41	0.21-0.83	0.01
Pollux	DaraRD	RD	0.37	0.18-0.76	0.01
Candor	DaraKD	KD	0.58	0.30-1.12	0.11
Pooled Effect Siz	ze ((l²0%, Cochrans Q p	= 0.63)	0.45	0.30-0.67	< 0.001

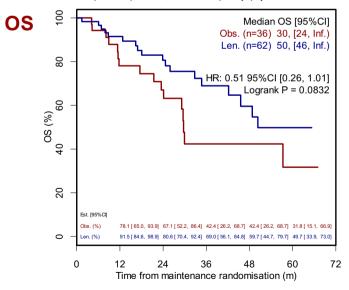
Addition of D to FL backbone regimens among patients with HRC led to improved PFS (pooled HR 0.67; 95% CI 0.47-0.95, p = 0.02)


Similar to R/R setting (Pooled HR 0.45; 95% CI 0.30-0.67, p < 0.01)


Giri et al, Abstract 8540, ASCO 2020 Smith G et al, JAMA Oncology 2020

MAINTENANCE: Lenalidomide post ASCT: meta-analysis

MAINTENANCE: Lenalidomide post ASCT: Myeloma XI trial



• median fup 79.5 mos

• PFS 57 vs 30 mos (HR 0.48, p < 0.001)

• PFS benefit observed across all prespecified subgroups (cytogenetic risk, age, sex, disease stage, induction therapy, response at baseline...)

t(4;14) and/or del(17p) present

Jackson et al. Lancet Oncol 2019;20:57-73

MAINTENANCE:Pls-based maintenance

PAD/bort

(= 413)

36 / 76

93 (23)

34

90

Response: % CR / ≥ VGPR

Upgrade during maintenance

Median PFS, mos

Median OS. mos

VAD/thal

(= 414)

24 / 56

99 (24)

28

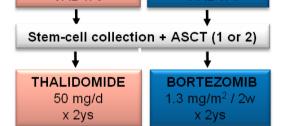
83

P value

< 0.001

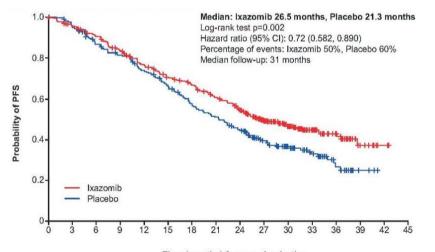
0.64

0.001


0.22

Lack of studies comparing bort vs observation/len, enabling to isolate the contribution of bort as maintenance therapy

PFS at 60 mo	PAD	/Bort	VAD/Thal		
by subtype, %	Yes	No	Yes	No	
del(17p)	22	27	5	24	
	(<i>P</i> =	:.5)	(<i>P</i> < .001)		
OS at 60 mos	PAD	/Bort	VAD/Thal		
by subtype, %	Yes	No	Yes	No	
del(17p)	65 72		18	66	
	(P =	:.5)	(<i>P</i> < .001)		

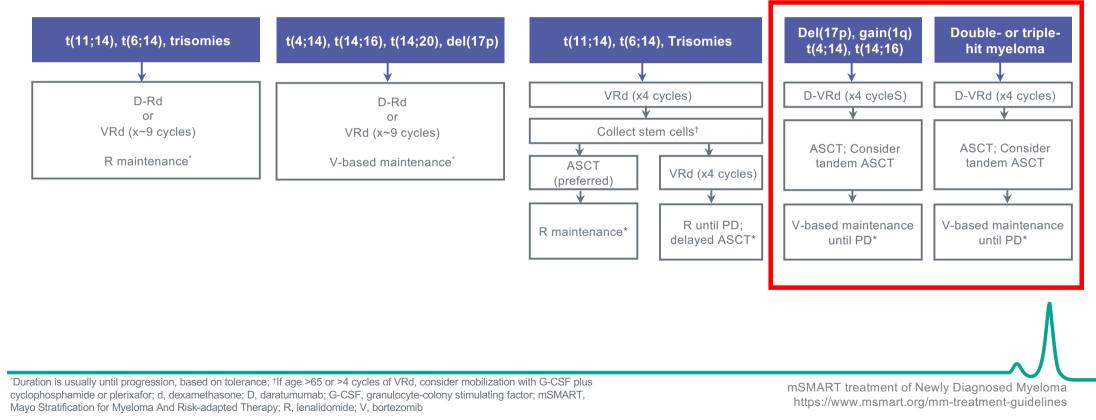

VAD x 3 PAD x 3

HOVON-65/GMMG-HD4 study

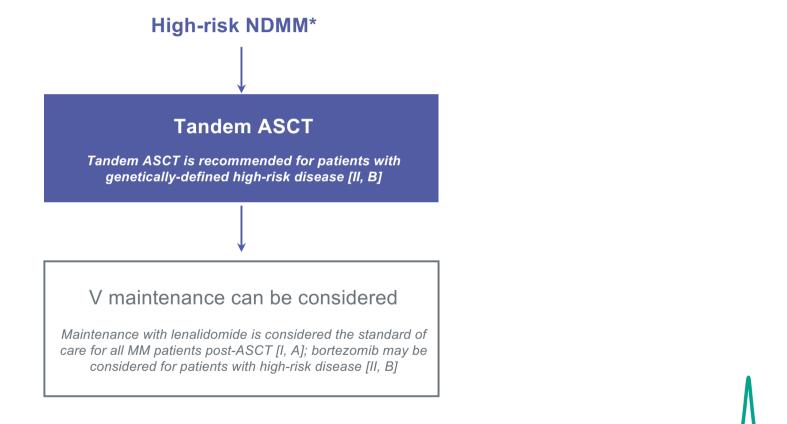
Sonneveld et al. JCO 2012; Goldschmidt et al. Leukemia 2018; Neben et al. Blood. 2012

TOURMALINE-MM3 study: PFS

Variable	Subgroup	Ixazomib	Placebo	HR	95% CI
All subjects	All (n = 656)	100	100	0.720	(0.582, 0.890)
Induction regimen	Pl exposed (n = 585)	89	89	0.750	(0.600, 0.938)
	PI without IMiD (n = 389)	59	59	0.667	(0.510, 0.874)
	PI with IMiD (n = 196)	30	30	0.966	(0.647, 1.442)
	PI + thalidomide* (n = 177)			0.993	(0.643, 1.532)
	PI+lenalidomide* (n = 24)			0.594	(0.132, 2.683)
	No PI; with IMiD (n = 71)	11	11	0.497	(0.254, 0.973)
Age	<60 years (n = 356)	58	49	0.835	(0.620, 1.125)
	≥60 years and <75 years (n = 300)	42	51	0.662	(0.480, 0.914)
Pre-induction ISS stage	I (n = 245)	38	36	0.678	(0.471, 0.975)
	ll (n = 221)	33	35	0.876	(0.611, 1.256)
	III (n = 190)	29	29	0.661	(0.438, 0.998)
Response at study entry	CR (n = 225)	33	36	0.881	(0.593, 1.307)
	VGPR (n = 294)	45	44	0.686	(0.498, 0.945)
	PR (n = 137)	21	20	0.693	(0.440, 1.093)
Cytogenetic risk	High-risk (n = 115)	15	21	0.625	(0.383, 1.019)
	Standard-risk (n = 404)	64	58	0.648	(0.490, 0.857)
Renal function based on	30–<60 ml/min (n = 58)	10	8	0.708	(0.240, 2.090)
baseline creatinine clearance	≥60 ml/min (n = 595)	90	92	0.738	(0.592, 0.920)
				0 0.25 0.5 0.75 1.0 3.0	
				Favors ixazomib Favors blac	ebo

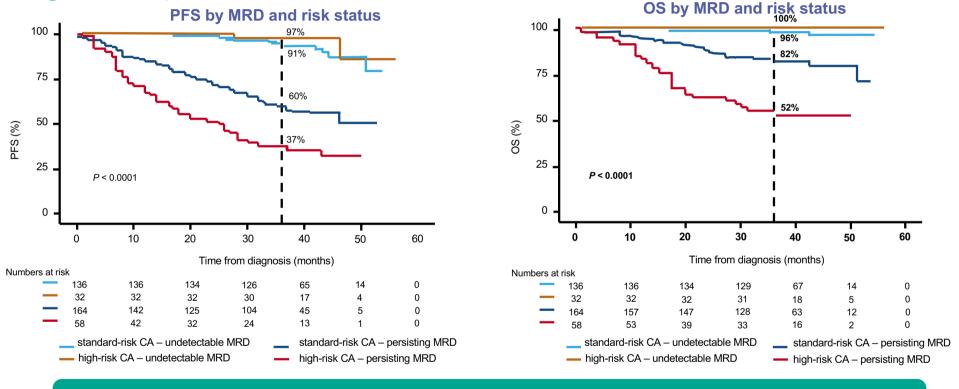

Dimopoulos M et al, Lancet 2019

Time (months) from randomization


mSMART treatment guideline recommendations regarding common cytogenetic abnormalities

Transplant-ineligible

Transplant-eligible

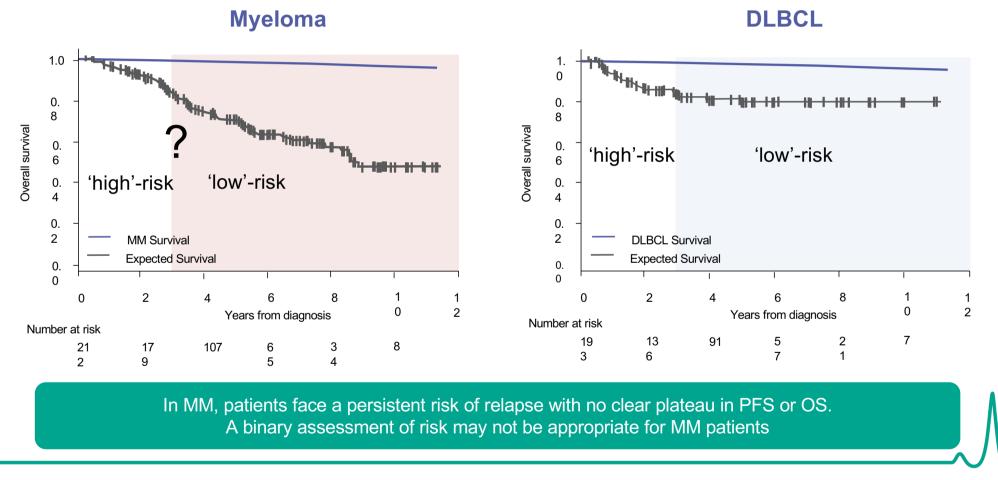

ESMO have limited guidance on treatment of high-risk patients

*High-risk NDMM is not specifically defined; ASCT, autologous stem cell transplant; ESMO, European Society of Medical Oncology; NDMM, newly diagnosed multiple myeloma; V, bortezomib

Dimopoulos MA, et al. Ann Onc 2021;32(3):309-22

MRD negativity may overcome poor survival in high-risk patients

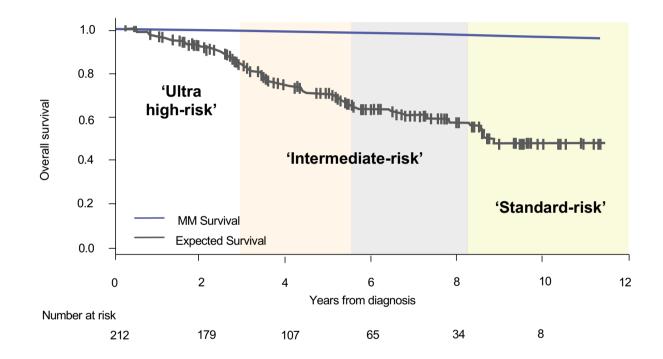
Data from the PETHEMA/GEM2012MENOS65 trial showed patients with high-risk CAs and undetectable MRD after VRd induction/consolidation have similar outcomes to patients with standard-risk disease


High-risk defined as patients with t(4;14), t(14;16), and/or del(17p13) by fluorescent in situ hybridization (FISH)

CA, cytogenetic abnormalities; PFS, progression-free survival; MRD, minimal residual disease; OS, overall survival;

Goicoechea I et al. Blood 2021;137(1);49-60

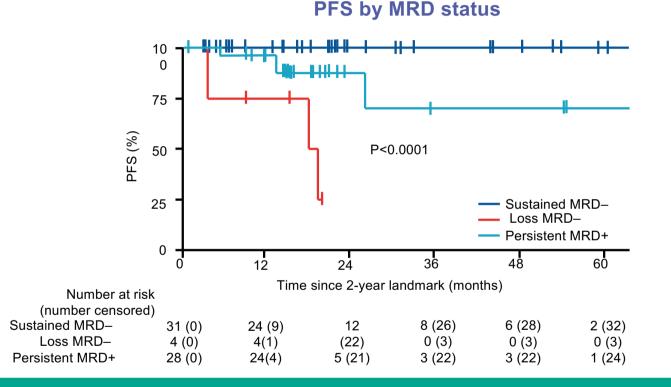
VRd, bortezomib, lenalidomide, dexamethasone


The definition of 'risk' is continuing to evolve

DLBCL, diffuse large B-cell lymphoma; MM, multiple myeloma; OS, overall survival; PFS, progression-free survival

Ravi P, et al. Blood Cancer J 2018;8:26

A quantitative definition may be more suitable for MM patients

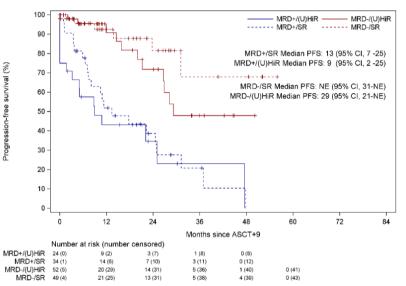


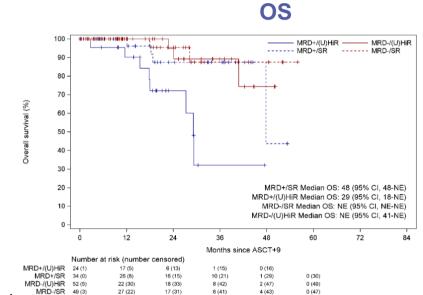
'Ultra high-risk' to describe patients who experience early relapse **'Intermediate-risk'** and **'Standard-risk'** groups for patients that experience later relapse

MM, multiple myeloma

Ravi P, et al. Blood Cancer J 2018;8:26

There is a need for prolonged treatment in HRMM: role of maintenance therapy and SUSTAINED MRD negativity

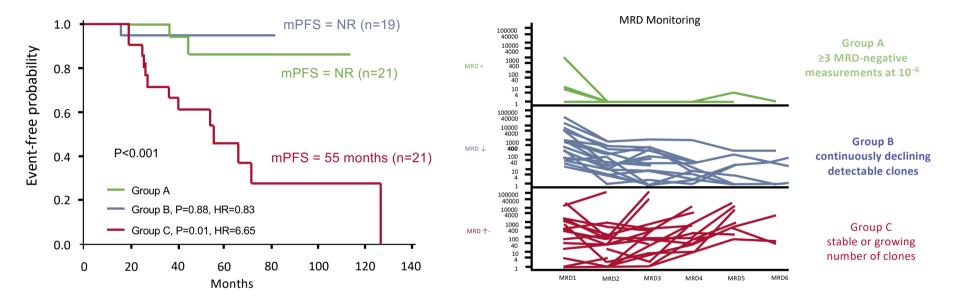

Single agent maintenance may not be enough for some patients with high-risk features to maintain MRD negativity achieved with induction therapy


Patients received up to 5 years of continuous Len maintenance. MRD was assessed from first-pull bone marrow aspirates at baseline and annually by flow cytometry per IMWG criteria, (limit of detection of at least 1×10⁻⁵) PFS, progression-free survival; MRD, minimal residual disease

Diamond B, et al. Lancet Haematol 2021;8:e422-32

Impact of MRD status by molecular risk subgroups (HR and ultra HR) during lenalidomide maintenance (MRC XI trial): importance of sensitivity level

MRD assessment by flow cytometry sensitivity 10⁻⁵


Multivariable analysis

	ASCT+3 PFS		ASCT+9 PFS			
	HR	95%CI	Р	HR	95%CI	Р
MRD (-ve vs +ve)	0.401	0.271-0.592	<0.0001	0.220	0.102-0.472	0.0001
Treatment (len vs obs)	0.388	0.268-0.561	<0.0001	0.218	0.102-0.463	<0.0001
Cytogenetics (UHiR+HR vs SR)	2.576	1.770-3.748	<0.0001	2.357	1.084-5.126	0.0305
	ASCT+3 OS			ASCT+9 OS		
MRD (-ve vs +ve)	0.457	0.246-0.849	0.0132	0.242	0.055-1.073	0.0619
Treatment (len vs obs)	0.528	0.297-0.938	0.0294	0.252	0.070-0.906	0.0347
Cytogenetics (UHiR+HR vs SR)	4.286	2.272-8.086	<0.0001	6.658	1.311-33.82	0.0222

De Tute R et al, IMW 2021

Serial MRD testing may predict clinical relapse

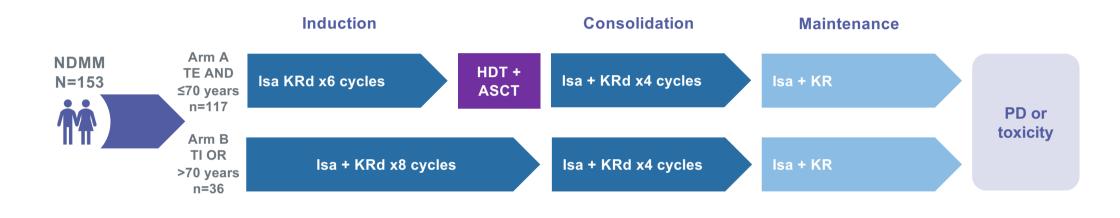
Effect of repeated MRD monitoring on PFS in 61 NDMM patients (up to 6 MRD assessments)

Patients in Group A or Group B had significantly more prolonged PFS than patients in Group C (P<0.001). Serial MRD testing was able to predict clinical relapse in 9 out of 10 cases

International Harmonization guidelines: Clinical trials should assess MRD whenever bone marrow examination is performed, and periodically thereafter whilst CR status is maintained

CR, complete response; m, median; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; PFS, progression-free survival

Martinez-Lopez, et al. Blood Adv 2020;4(14):3295-3301; Costa LJ, et al. 2020; Leukemia 2021;35:18-30


Clinical trials assessing MRD in high-risk NDMM

Trial	Phase	Population	Arms	Definition of high risk	MRD endpoint(s)		
GMMG- CONCEPT ¹	2	TE/TI	lsa-KRd ± ASCT	 ISS Stage II or III One or more of: del(17p) t(4;14) > 3 copies gain(1q) 	 MRD– rate (up to approx.1 year) (Primary) 		
OPTIMUM MUK9 ²	2	TE	D-CVRd + ASCT, D-VRd and D-VR consolidation and DR maintenance	Ultra high-risk NDMM by central trial genetic ≥2 high-risk lesions: • t(4;14) • t(14;16) • t(14;20) • gain(1q) • del(1p) • del(17p) or gene expression SKY92 (SkylineDx) profiling	 MRD– rate (100 days post-ASCT) (Secondary) 		
IFM 2018-04 ³	2	TE	D-KRd	 del(17p) or t(14;16) or t(4;14) 	 MRD– rate (48 months) (Secondary) 		
These studies will provide insights into the role of anti-CD38 antibodies added to standard backbone regimens both as induction/consolidation therapy, but also as long-term maintenance in high-risk patients							

ASCT, autologous stem cell transplant; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; Te, transplant eligible; Ti, transplant ineligible; D, daratumumab; d, dexamethasone; C, cvclophosphamide: Isa, isatuximab; K, carfilzomib R, lenalidomide: V, bortezomib

https://clinicaltrials.gov/ct2/show/NCT03104842
 https://www.clinicaltrials.gov/ct2/show/NCT03188172
 https://clinicaltrials.gov/ct2/show/NCT03606577

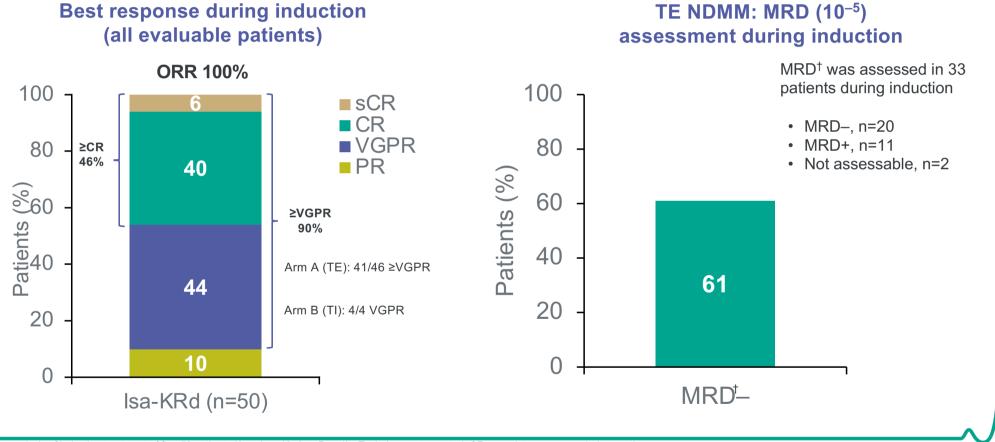
GMMG-CONCEPT: Study design

Induction Cycle 1	Week 1	Week 2	Week 3	Week 4	Induction Cycle 2–6	Week 1	Week 2	Week 3	Week 4
	\wedge	\wedge	\wedge	\uparrow		\wedge		\wedge	
Isatuximab 10 mg/kg	^g D1 个个	D8	D15	D22	Isatuximab 10 mg/kg	D1		D15	
Carfilzomib 20 mg/m	² D12	$\Delta \Delta$	<u>ተ</u> ተ			ተ ተ	ተተ	<u>ተ</u> ተ	
Carfilzomib 36 mg/m	2	D89	D1516		Carfilzomib 36 mg/m		D89	D1516	
Lenalidomide 25 mg	*	Days	1–21		Lenalidomide 25 mg	*	Days	1–21	
0	\wedge	\wedge	\wedge	\wedge	0	\wedge	\wedge	$\mathbf{\uparrow}$	\wedge
Dexamethasone 40 mg*	* D1	D8	D15	D22	Dexamethasone 40 mg*	* D1	D8	D15	D22

*Dose adaption of lenalidomide according to renal function; **20 mg in patients ≥75 years

ASCT, autologous stem cell transplant; d, dexamethasone; GMMG, German Multiple Myeloma Group; HDT, highdose therapy; Isa, isatuximab; K, carfilzomib; NDMM, newly diagnosed multiple myeloma; PD, progressive disease; R, lenalidomide; Te, transplant eligible; Ti, transplant ineligible

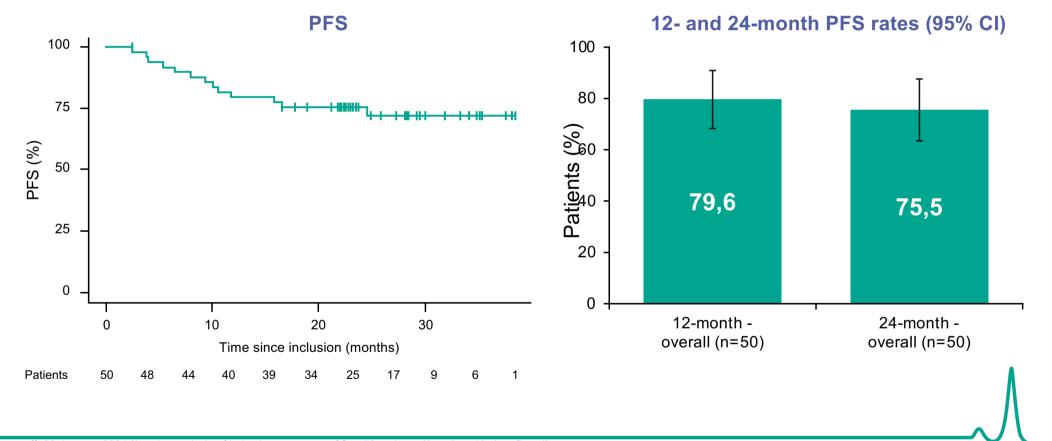
Weisel KC, et al. Presented at ASCO 2020 Virtual meeting; Abstract #8508; ClinicalTrials.gov: NCT03104842


GMMG-CONCEPT: Baseline characteristics

ITT population	N=50	ITT population	N=50
Age, median (range), years	58 (42–82)	High-risk cytogenetics, n (%)	
Arm A (TE)	58 (42–69)	del(17p)	26 (52)
Arm B (TI)	77 (72–82)	t(4;14)	19 (38)
Male / Female, n	21 / 29	t(14;16)	5 (12)
ECOG PS, n (%)			
0	21 (42)	>3 copies 1q21	21 (42)
1	23 (46)	Any 2 high-risk aberrations	13 (26)
2	6 (12)	≥3 high-risk aberrations	2 (4)
ISS, n (%)		LDH, mean (range), U/L	225.5 (190.5–
II	28 (56)		,
III	22 (44)	LDH above ULN, n (%)	10 (20)

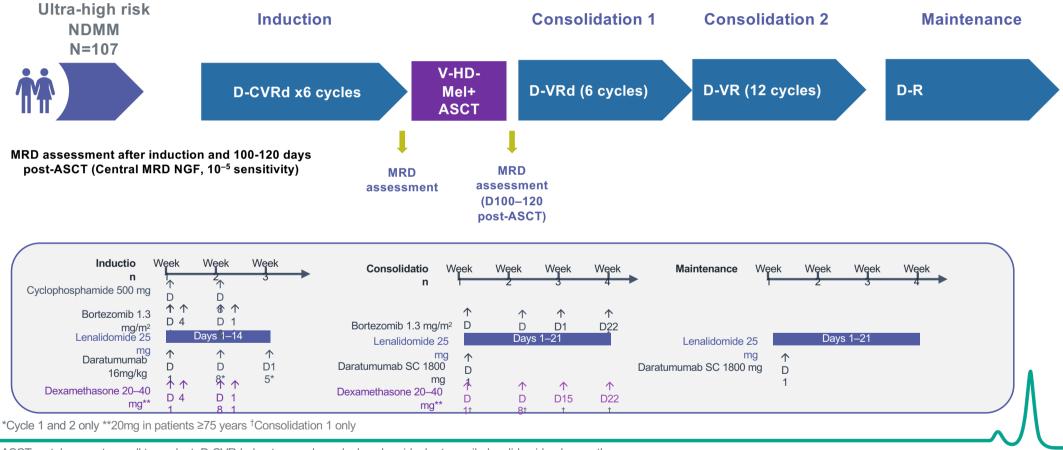
ECOG, Eastern Cooperative Oncology Group; ISS, International Staging System; ITT, intent to treat; LDH, lactic dehydrogenase; PS, performance status; GMMG, German Multiple Myeloma Group; Te, transplant eligible; Ti, transplant ineligible; ULN, upper limit of normal

Leypoldt LB, et al. EHA 2021, Presentation S183


GMMG-CONCEPT interim analysis*: Response and MRD

*Interim analysis of induction treatment of first 50 patients (Arm A n=46, Arm B n=4). †Technique not reported. CR, complete response; d, dexamethasone; Isa, isatuximab; GMMG, German Multiple Myeloma Group K, carfilzomib; MRD, minimal residual disease; ORR, overall response rate; PR, partial response; NDMM, newly diagnosed multiple myeloma; R, lenalidomide; sCR, stringent complete response; TE, transplant eligible; VGPR, very good partial response

Weisel KC, et al. ASCO 2021; Abstract 8508 Leypoldt LB, et al. EHA 2021, Presentation S183


GMMG-CONCEPT interim analysis*: PFS (median follow-up 24.9 months)

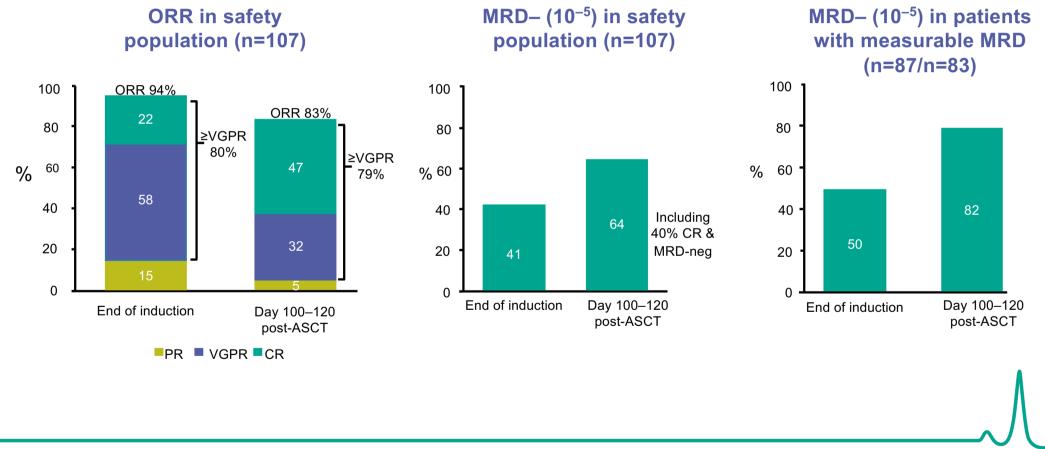
Data cut-off, 26 January 2021.*Interim analysis of induction treatment of first 50 patients (Arm A n=46, Arm B n=4); CI, confidence interval; GMMG, German Multiple Myeloma Group; PFS, progression-free survival; Te, transplant eligible; Ti, transplant ineligible

Leypoldt LB, et al. EHA 2021, Presentation S183

OPTIMUM-MUK9: Study design

ASCT, autologous stem cell transplant; D-CVRd, daratumumab, cyclophosphamide, bortezomib, lenalidomide, dexamethasone; Mel, melphalan; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; NGF, next generation flow

Kaiser M, et al. Presented at ASCO 2021. Abstract 8001

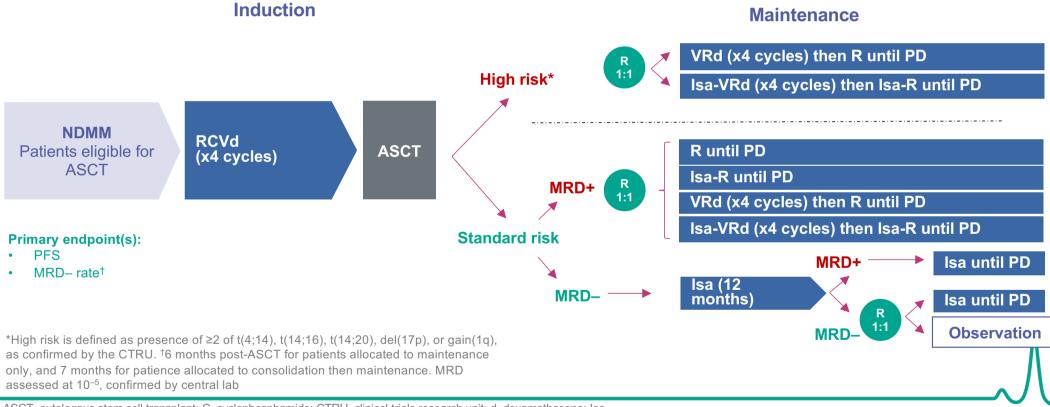

OPTIMUM-MUK9: Baseline characteristics

Patient characteristics	Safety population (n=107)
Age, median (range), years	60 (35–78)
ISS, n (%) Stage 1 Stage 2 Stage 3	29 (27) 44 (40) 34 (32)
ECOG performance status, n (%) 0 1 2	51 (48) 42 (39) 10 (9)
Received bridging induction therapy, n (%)	86 (80)
Double-hit genetics, n (%)	57 (53)
SKY92 risk signature present, n (%)	83 (77)
Both double hit and SKY92, n (%)	33 (31)

ISS, International Staging System; ECOG, Eastern Cooperative Oncology Group

Kaiser M, et al. Presented at ASCO 2021. Abstract 8001

OPTIMUM-MUK9: Response and MRD

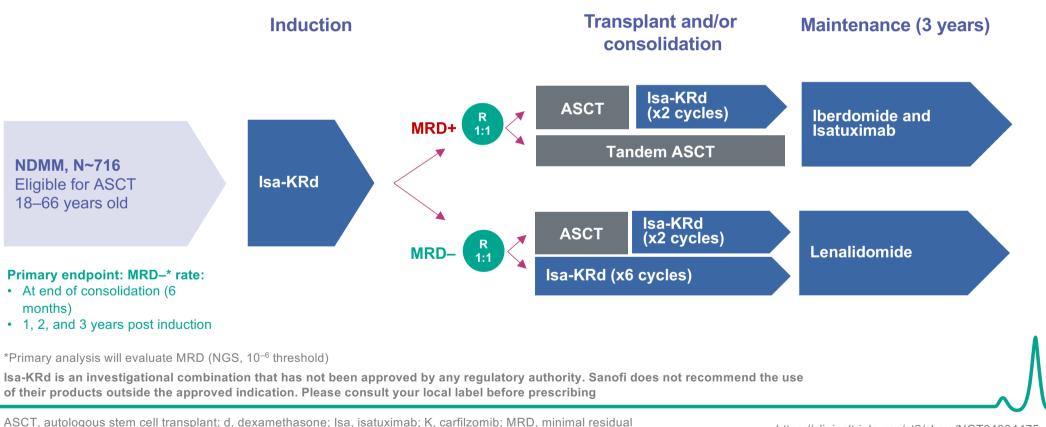

ASCT, autologous stem cell transplant; CR, complete response; MRD, minimal residual disease; PR, partial response; VGPR, very good partial response

Kaiser M, et al. Presented at ASCO 2021. Abstract 8001

MRD and Risk assessment as driver of first-line therapy

Risk-Adapted therapy Directed According to Response (RADAR)

Sponsor: University of Leeds Estimated primary completion: Not available


ASCT, autologous stem cell transplant; C, cyclophosphamide; CTRU, clinical trials research unit; d, dexamethasone; Isa, isatuximab; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; PD, progressive disease; PFS, progression-free survival: R. lenalidomide: V. bortezomib

https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-001258-25/GB

MRD status as driver of first-line therapy

Minimal Residual Disease Adapted Strategy (MIDAS)

Sponsor: Intergroupe Francophone du Myelome (IFM) Estimated primary completion: September 2024

disease; NDMM, newly diagnosed multiple myeloma; NGS, next-generation sequencing; R, lenalidomide

https://clinicaltrials.gov/ct2/show/NCT04934475

^{2nd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Summary

- First challenge: Definition of HR patients: need for a consensus, maybe classifying different MM entities
- Despite advances in treatment, these patients remain an unmet need, experiencing primary resistance or early progression
- Sustained-MRD negativity, at the highest sensitivity level, can overcome poor prognosis in HR patients; clinical trials are now investigating MRD as an endpoint in HR NDMM patients
- Possible role for individualize treatment options/multi-drug regimens, with combined targeted therapies

Turin, September 13-14, 2021 Starhotels Majestic ^{2nd edition} Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Personal recommendations on definition and treatment of HR-NDMM

Newly	diagnosed	transplant-	eligible (N	DTE) MM	patients

Risk/estimated frequency	Definition	Suggested treatment
HR (25-30%)	 ISS 3, 1 cytogenetic-molecular aberration*, R-ISS 3, R2-ISS 3 and 2 intermediate-high, > 0.07% circulating PCs, persistent MRD positivity after optimal treatment, renal failure 	Quadruplet induction (MoAb + PI + IMiD + dex) Double ASCT Quadruplet consolidation Single/two drugs maintenance (PI + IMiD) for at least 2 years if sustained MRD- Prompt change/intensification of therapy in patients with persistent MRD + and lost of MRD-
Ultra-HR (6-10%)	genetic abnormalities, co-existence of	Innovative strategies, including quadruplet induction (MoAb + PI + IMiD + dex) CAR-T therapy (± ASCT) Innovative maintenance with T-cell engagers. Close MRD follow-up and change of therapy at conversion from – to +

*t(4;14) if concomitant presence of a second unfavorable genetic abnormality or clinical feature, t(14;16), t(14;20), amplification 1q (≥ 4 copies), del 1p, del 17p in at least 55-60% PCs, TP53 bi-allelic inactivation (double-hit TP53), HR GEP signature

Turin, September 13-14, 2021 Starhotels Majestic

Zamagni E et al, «How I treat HR MM», Blood 2021, under revision